homotopy theory
- 网络同伦论;同伦理论;伦移理论
-
Study of the Problems of Homotopy Theory in Category of Morphisms
态范畴的同伦论问题研究
-
Eilenberg-MacLane space plays an essential role in Obstruction theory in Algebraic topology . And it is an important part of Homotopy theory .
Eilenberg-MacLane空间是代数拓扑中阻碍理论的核心,是同伦论的重要构成部分。
-
Application of Homotopy Theory in Defects of Liquid Crystals
同伦群理论在液晶缺陷中的应用
-
The topological structure of the superfluid He system has been studied using the homotopy theory for defects in ordered media developed in the 80s .
本文利用有序介质缺陷的同伦论系统地研究超流He系统的拓扑结构。
-
Homotopy Theory for Locales
Locale同伦理论
-
As the corresponding theoretical basis we restate the concerned results in homotopy theory as a theorem and call it the invariance theorem for homotopy equivalence transformation .
为此,我们将同伦理论中的有关结果整理成同伦等价变换不变性定理,以作为这方面的理论基础。
-
The most important content in Homotopy theory is to calculate the homotopy group of a topological space . Now the most useful method to calculate homotopy group is spectral sequence .
同伦论的重要内容就是计算空间的同伦群,目前计算同伦群的最重要方法是谱序列。
-
Cohomology operation belongs to Homotopy theory and can be used to calculate the homotopy group of topological space . Further more it has a bijection relationship with the cohomology group of the corresponding Eilenberg-MacLane space .
上同调算子也是同伦论的一部分重要内容,可以用来计算空间的同伦群,并且与相应的Eilenberg-MacLane空间的上同调群存在双射。
-
With regard to Schwarz lemma , Basing on the argument principle and homotopy theory , the author extend the classical Schwarz lemma from analytic function to meromorphic function whose number of the zeros are k th , and these functions are defined on the unit disk .
在Schwarz引理方面,基于辐角原理和同伦理论,作者将经典的Schwarz引理从单位圆盘上的解析函数推广到了具有k阶零点的亚纯函数。
-
In addition , the approximate calculation for Elastic Layered System ( ELS ) to be based on the homotopy neural network theory is discussed with the combination of major contents in the dissertation and the current development trend of ANN theory .
另外,结合本文的主要研究内容,以及当前神经网络理论发展的趋势,本文还探讨了基于同伦神经网络理论的弹性层状体系的近似计算。
-
Finally , a simple introduce of homotopy is employed . The classification of the static magnetic domain wall structures of tube - and envelope-type is made in an unified way using the homotopy theory .
并且简单介绍了拓扑学中同伦论的历史和思想,为后面提出新的解析方法进行理论上的铺垫。本文从拓扑学角度,对管状磁畴壁和闭合磁畴壁静态结构的分类问题,做了统一处理。